Đề Xuất 5/2023 # Độ Cứng Của Thép # Top 12 Like | Herodota.com

Đề Xuất 5/2023 # Độ Cứng Của Thép # Top 12 Like

Cập nhật nội dung chi tiết về Độ Cứng Của Thép mới nhất trên website Herodota.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất.

Định nghĩa về đơn vị đo độ cứng vật liệu

Đơn vị đo độ cứng là kiểm tra độ cứng vật liệu là phương pháp đo cường độ của vật liệu bằng cách xác định khả năng chống lại các xâm nhập do vật liệu cứng hơn.

Đơn vị độ cứng không phải là một đặc tính của vật liệu giống như các đơn vị cơ bản của khối lượng, chiều dài và thời gian mà giá trị độ cứng là kết quả của một quy trình đo lường xác định.

Đặc điểm của độ cứng vật liệu

Độ cứng chỉ biểu thị tính chất bề mặt mà không biểu thị tính chất chung cho toàn bộ sản phẩm

Độ cứng biểu thị khả năng chống mài mòn của vật liệu, độ cứng càng cao thì khả năng mài mòn càng tốt

Đối với vật liệu đồng nhất (như trạng thái ủ) độ cứng có quan hệ với giới hạn bền và khả năng gia công cắt. Độ cứng cao thì giới hạn bền cao và khả năng cắt kém. Khó tạo hình sản phẩm.

Phân loại các phương pháp đo độ cứng

Các phương pháp đo độ cứng thường được phân loại theo 3 phương pháp đo chính là Ấn lõm, bật nảy và gạch xước.

Với phương pháp Ấn lõm cũng được phân chia thành hai loại độ cứng là độ cứng tế vi và độ cứng thô đại. Độ cứng thường dùng là độ cứng thô đại, vì mũi đâm và tải trọng đủ lớn để phản ánh độ cứng của nền, pha cứng trên một diện tích tác dụng đủ lớn, sẽ có ý nghĩa hơn trong thực tế sản xuất. Đó là lý do bạn cần có hiểu biết để tránh việc quy đổi độ cứng không phản ánh được cơ tính thậm chí sai. Độ cứng tế vi thường được dùng trong nghiên cứu, vì mũi đâm nhỏ có thể tác dụng vào từng pha của vật liệu.

Nếu phân loại theo thang đo, ta cũng có rất nhiều phương pháp xác định độ cứng khác nhau:

Thang đo Leeb

Phương pháp bật nảy với thang đo Leeb (LRHT) là một trong 4 phương pháp được sử dụng phổ biến nhất khi kiểm tra độ cứng kim loại. Phương pháp cơ động này thường được sử dụng khi kiểm tra các vật mẫu tương đối lớn (trên 1kg). Phương pháp dựa trên hệ số bật nẩy lại và là phương pháp đo kiểm tra không phá hủy.

Thang đo Mohs

Độ cứng theo phương pháp gạch xước, tiêu biểu là thang đo Mohs xác định độ cứng của mạch tinh thể vật liệu và thường ít được sử dụng trong công nghiệp.

Độ cứng Mohs

Khoáng sản

Công thức hóa học

Độ cứng tuyệt đối 

Hình ảnh

1

Talc

Mg 3 Si 4 O 10 (OH) 2

1

2

Gypsum

CaSO 4 · 2H 2 O

2

3

Calcite

CaCO 3

14

4

Fluorite

CaF 2

21

5

Apatite

Ca 5 (PO 4 ) 3 (OH – , Cl – , F – )

48

6

Orthoclase

KAlSi 3 O 8

72

7

Quartz

Si 2

100

8

Topaz

Al 2 SiO 4 (OH – , F – ) 2

200

9

Corundum

Al 2 O 3

400

10

Diamond

C

1500

Thang đo Knoop

Thang đo Knoop là phương pháp đo tế vi, sử dụng để kiểm tra độ cứng của vật liệu dễ vỡ hoặc tấm mỏng do phương pháp đo chỉ gây ra một vết lõm nhỏ.

HK=P/Cp .L²

Trong đó:

L = chiều dài thụt dọc theo trục dài của nó

P = Trọng lượng

Thang đo độ cứng Vickers (HV)

Lịch sử 

Phép kiểm tra độ cứng Vickers đã được phát triển năm 1921 bởi Robert L. Smith và George E. Sandland tại Vickers Ltd, là một sự thay thế cho phương pháp Britnell để đo độ cứng của vật liệu. Phép kiểm tra Vickers thường dễ sử dụng hơn các phép kiểm tra độ cứng khác, vì các phép tính cần thiết thì độc lập với kích thước của indenter, và indenter có thể được sử dụng cho mọi vật liệu bất kể độ cứng của nó.[1] 

Nguyên tác cơ bản của phương phát Vickers

Chỉ số độ cứng có thể được chuyển đổi sang đơn vị pascals, nhưng không nên nhầm lẫn với áp suất, đại lượng cũng có đơn vị là pascals. Chỉ số độ cứng được quyết định bởi trọng lượng trên diện tích bề mặt của vết lõm chứ không phải là phần diện tích chịu lực, và do đó không phải là áp suất.

Chỉ số độ cứng Vickers

Chỉ số độ cứng Vickers được viết là xxxHVyy, ví dụ:  440HV30, hoặc xxxHVyy/zz nếu thời gian giữ của áp lực nó không nằm trong khoảng 10 đến 15 giây, ví dụ như 440Hv30/20, trong đó:

440 là chỉ số độ cứng,

HV chỉ thang đo độ cứng (Vickers),

30 chỉ trọng tải được sử dụng, đơn vị kgf.

20 chỉ thời gian tải nếu nó không nằm trong khoảng 10 – 15 s

Giá trị Vickers thường độc lập với lực đo: sẽ như nhau với cả lực đo 500 và 50 kgf, chừng nào mà lực đo lớn hơn 200 gf.[2]

Đối với mẫu mỏng độ sâu indentation co thể là một vấn đề do các ảnh hưởng của mặt đế. Theo kinh nghiệm bề dày mẫu nên lớn hơn 2,5 lần đường kính vết lõm. Độ sâu vết lõm sắc có thể được tính theo:

Liệu

Giá trị

316L

140HV30

347L thép không gỉ

180HV30

Carbon thép

55–120HV5

Sắt

30–80HV5

Martensite

1000HV

Kim cương

10000HV

Thang đo độ cứng Vickers(HV), được phát triển như một phương pháp thay thế cho Brinell trong một số trường hợp. Thông thường phương pháp đo dựa trên Vicker được cho là dễ sử dụng hơn do việc tính toán kết quả không phụ thuộc vào kích cỡ đầu đo.

Thang đo Brinell

Thang đo Brinell (BHN hay HB)là một trong những thang đô độ cứng đầu tiên được phát triển và ứng dụng rộng rãi trong cơ khí và luyện kim.

Bảng các giá trị độ cứng của vật liệu, đường kính bi và tải trọng đặt theo Brinell

Vật liệu

Phạm vi đo cứng theo Brinell

Chiều dày nhỏ nhất của mẫu thử (mm)

Quan hệ giữa tải trọng và đường kính bi

Đường kính bi (mm)

Tải trọng (kg)

Thời gian chịu tải (s)

Kim loại đen

140-150

Từ 6 đến 3

Từ 4 đến 2

Nhỏ hơn 2

F = 30D2

10,0

5,0

2,5

3000

750

187,5

10

< 140

Lớn hơn 6

Từ 6 đến 3

Nhỏ hơn 3

F = 10D2

10,0

5,0

2,5

1000

250

62.5

10

Kim loại màu

Lớn hơn 6

Từ 4 đến 2

Nhỏ hơn 2

F = 30D2

10,0

5,0

2,5

3000

750

187.6

30

25 – 130

Lớn hơn 6

Từ 6 đến 3

F = 10D2

10,0

5,0

1000

250

20

Nhỏ hơn 3

2,5

62.5

8-35

Lớn hơn 6

Từ 6 đến 3

Nhỏ hơn 3

F = 2.5D2

10,0

5,0

2,5

250

62.5

15.6

60

Thang đo Rockwell

Lịch sử ra đời phương pháp đo độ cứng Rockwell

Năm 1914, hai nhà khoa học tên là Hugh M.Rockwell và Stanley P.Rockwell đã tìm ra phương pháp thử độ cứng Rockwell dựa trên những khái niệm cơ bản về phép đo độ cứng thông qua chiều sâu vi phân của giáo sư người Áo (tên là Ludwig).

Kể từ đó phương pháp đo độ cứng Rockwell ra đời. Và phương pháp này sau đó đã được ứng dụng khá phổ biến trong việc xác định nhanh hiệu ứng của nhiệt luyện vật liệu.

Phương pháp đo đo độ cứng Rockwell

Theo phương pháp này, một mũi nhọn kim cương có góc đỉnh là 120° và bán kính cong R= 0.2mm hay viên bi thép tôi cứng có đường kính là 1/16, 1/8, 1/4, 1/2 inchs được ấn lên bề mặt vật cẩn thử. Độ cứng được xác định bằng cách ta lần lượt tác dụng lên viên bi hoặc mũi kim cương với hai lực ấn nối tiếp.

Tuỳ thuộc vào loại và kích thước đầu đo cũng như giá trị lực tác dụng được sử dụng mà người ta phân độ cứng Rockwell ra 3 thang tương ứng RA, RB, RC.

Đơn vị đo độ cứng HRC là gì?

Đơn vị đo độ cứng HRC (Hardness Rockwell C) là đơn vị đo lượng độ cứng của vật liệu như thép SKD11, SKD61, SCM440, DC11, …

Trên máy đo độ cứng sử dụng đơn vị đo Rockwell thì có thang đo C (chữ đen) với mũi nhọn kim cương và lực ấn 150 kg. Thang C dùng để đo các vật liệu có độ cứng trung bình và cao (thép sau khi nhiệt luyện: Tôi chân không, tôi dầu, …).

Ngoài ra, còn có thang đo B (chữ đỏ) dùng để thử độ cứng của thép chưa tôi, đồng, … với lục ấn 100 kg và thang đo A với với lực ấn 60 kg.

Tùy vào vật liệu mà ta sử dụng thang đo cho phù hợp. Để thuận lợi cho việc lựa chọn phương pháp xác định độ cứng ta có thể sơ bộ phân loại như sau:

Loại có độ cứng thấp: Gồm các loại vật liệu có độ cứng nhỏ hơn 20 HRC, 100 HRB.

Loại có độ cứng trung bình: Có giá trị độ cứng trong khoảng 25 HRC – 45 HRC.

Loại có độ cứng cao: Có giá trị độ cứng từ 52 HRC – 60 HRC.

Loại có độ cứng rất cao: Giá trị độ cứng lớn hơn 62 HRC.

Ưu điểm và nhược điểm của phương pháp đo độ cứng Rockwell

Stt Ưu điểm Nhược điểm

1 Nhanh chóng và dễ dàng Nhiều thang đo với mũi đo trọng tải khác nhau

2 Không cần hệ thống quang học Pham vi các chi tiết nhỏ, chính xác

3 Ít bị ảnh hưởng bởi độ nhám của bề mặt Vật liệu tấm mỏng, Vật liệu phủ mạ cho kết quả thường không chính xác

Thang đo Rockwell (HR) xác định độ cứng dựa trên khả năng đâm xuyên vật liệu của đầu đo dưới tải. Có nhiều thang đo Rockwell khác nhau sử dụng tải và đầu ấn lõm khác nhau và cho kết quả ký hiệu bởi HRA, HRB, HRC…

Bảng các giá trị độ cứng và tính dẻo (khả năng gia công) của vật liệu phổ biến theo Rockwell

Vật liệu/Metal

Tôi cứng/Temper

Độ cứng Rockwell (thang B)

Ứng suất đàn hồi (KSI)

Ứng suất đàn hồi (MPa)

Tính dẻo

1: rất dẻo

5: cứng

Aluminum

A93003-H14

20 to 25

21

145

1

Aluminum

A93003-H34

35 to 40

29

200

1

Aluminum

A93003-H14

20 to 25

20

138

1

Aluminum

A96061-T6

60

40

275

4

Copper

1/8 hard (cold rol I)

10

28

193

1

Gilding metal

1/4 hard

32

32

221

1

Commercial bronze

1/4 hard

42

35

241

2

Jewelry Bronze

1/4 hard

47

37

255

2

Red Brass

1/4  hard

65

49

338

2

Cartridge Brass

1/4 hard

55

40

276

1

Yellow Brass

1/4  hard

55

40

276

2

Muntz Metal

1/8 hard

55

35

241

3

Architect ural Bronze

As Extruded

65

20

138

4

Phosphor Bronze

1/2 hard

78

55

379

3

Silicon Bronze

1/4 hard

75

35

241

3

Aluminum Bronze

As Cast

77

27

186

5

Nickel Silver

1/8  hard

60

35

241

3

Steel (Low carbon)

Cold-rolled

60

25

170

2

Cast Iron

As Cast

86

60

344

5

Stainless Steel 304

Temper Pass

88

30

207

2

Lead

Sheet Lead

5

0.81

5

1

Monel

Temper Pass

60

27

172

3

Zinc-Cu-Tn Alloy

Rolled

40

14

97

1

Titanium

Annealed

80

37

255

3

Chuyển đổi giữa các giá trị độ cứng

Bảng quy đổi độ cứng chỉ mang tính tương đối. Khi đo độ cứng tùy vào vật liệu và diện tích bề mặt mẫu… cần lựa chọn loại máy đo độ cứng để ra kết quả chính xác nhất. Cần lưu ý: Độ cứng HV là độ cứng tế vi, do đó khi đo độ cứng cần chú ý tổ chức của mẫu để có giá trị đo đúng. Ví dụ nếu vết đâm đúng vào vị trí cacbit thì độ cứng sẽ cao, nền thép có độ cứng thấp hơn.

BẢNG 1. BẢNG CHUYỂN ĐỔI GIÁ TRỊ ĐỘ CỨNG THEO LOẠI VẬT LIỆU

(Áp dụng cho bảng tra độ cứng của vật liệu được làm cứng và Hợp kim cứng)

(Hardness Conversion Table)

ROCKWELL (HR)

VICKER

BRINELL

SHORE

C

A

D

G

15N

30N

45N

HV

HB/30

HS

80

92.0

86.5

96.5

92.0

87.0

1865

79

91.5

85.5

91.5

86.5

1787

78

91.0

84.5

96.0

91.0

85.5

1710

77

90.5

84.0

90.5

84.5

1633

76

90.0

83.0

95.5

90.0

83.5

1556

75

89.5

82.5

89.0

82.5

1478

74

89.0

81.5

95.0

88.5

81.5

1400

73

88.5

81.0

88.0

80.5

1323

72

88.0

80.0

94.5

87.0

79.5

1245

71

87.0

79.5

86.5

78.5

1160

70

86.5

78.5

94.0

86.0

77.5

1076

69

86.0

78.0

93.5

85.0

76.5

1004

68

85.5

77.0

84.5

75.5

942

97

67

85.0

76.0

93.0

83.5

74.5

894

95

66

84.5

75.5

92.5

83.0

73.0

854

92

65

84.0

74.5

92.0

82.0

72.0

820

91

64

83.5

74.0

81.0

71.0

789

88

63

83.0

73.0

91.5

80.0

70.0

763

87

62

82.5

72.5

91.0

79.0

69.0

739

85

61

81.5

71.5

90.5

78.5

67.5

716

83

60

81.0

71.0

90.0

77.5

66.5

695

614

81

59

80.5

70.0

89.5

76.5

65.5

675

600

80

58

80.0

69.0

75.5

64.0

655

587

78

57

79.5

68.5

89.0

75.0

63.0

636

573

76

56

79.0

67.5

88.5

74.0

62.0

617

560

75

55

78.5

67.0

88.0

73.0

61.0

598

547

74

54

78.0

66.0

87.5

72.0

59.5

580

534

72

53

77.0

65.5

87.0

71.0

58.5

562

522

71

52

77.0

64.5

86.5

70.5

57.5

545

509

69

51

76.5

64.0

86.0

69.5

56.0

528

496

68

50

76.0

63.0

85.5

68.5

55.0

513

484

67

49

75.5

62.0

85.0

67.5

54.0

498

472

66

48

74.5

61.5

84.5

66.5

52.5

485

460

64

47

74.0

60.5

84.0

66.0

51.5

471

448

63

46

73.5

60.0

83.5

65.0

50.0

458

437

62

45

73.0

59.0

83.0

64.0

49.0

446

426

60

44

72.5

58.5

82.5

63.0

48.0

435

415

58

43

72.0

57.5

82.0

62.0

46.5

424

404

57

42

71.5

56.5

81.5

61.5

45.5

413

393

56

41

71.0

56.0

81.0

60.5

44.5

403

382

55

40

70.5

55.5

80.5

59.5

43.0

393

372

54

39

70.0

54.5

80.0

58.5

42.0

383

362

52

38

69.5

54.0

79.5

57.5

41.0

373

352

51

37

69.0

53.0

79.0

56.5

39.5

363

342

50

36

68.5

52.5

78.5

56.0

38.5

353

332

49

35

68.0

51.5

78.0

55.0

37.0

343

322

48

34

67.5

50.5

77.0

54.0

36.0

334

313

47

33

67.0

50.0

76.5

53.0

35.0

325

305

46

32

66.5

49.0

76.0

52.0

33.5

317

297

44

31

66.0

48.5

75.5

51.5

32.5

309

290

43

30

65.5

47.5

92.0

75.0

50.5

31.5

301

283

42

29

65.0

47.0

91.0

74.5

49.5

30.0

293

276

41

28

64.5

46.0

90.0

74.0

48.5

29.0

285

270

41

27

64.0

45.5

89.0

73.5

47.5

28.0

278

265

40

26

63.5

44.5

88.0

72.5

47.0

26.5

271

260

39

25

63.0

44.0

87.0

72.0

46.0

25.5

264

255

38

24

62.5

43.0

86.0

71.5

45.0

24.0

257

250

37

23

62.0

42.5

84.5

71.0

44.0

23.0

251

245

36

22

61.5

41.5

83.5

70.5

43.0

22.0

246

240

35

21

61.0

41.0

82.5

70.0

42.5

20.5

241

235

35

20

60.5

40.0

81.0

69.5

41.5

19.5

236

230

34

BẢNG 2. BẢNG CHUYỂN ĐỔI GIÁ TRỊ ĐỘ CỨNG

(Áp dụng cho Vật liệu không được làm cứng và Thép mềm)

(Hardness Conversion Table)

ROCKWELL(HR)

BRINELL

B

F

G

E

K

A

15T

30T

45T

HB/5

HB/30

100

82.5

61.5

93.0

82.0

72.0

201

240

99

81.0

61.0

92.5

81.5

71.0

195

234

98

79.0

60.0

81.0

70.0

189

228

97

77.5

59.0

92.0

80.5

69.0

184

222

96

76.0

59.0

80.0

68.0

179

216

95

74.0

58.0

91.5

79.0

67.0

175

210

94

72.5

57.5

78.5

66.0

171

205

93

71.0

57.0

91.0

78.0

65.0

167

200

92

69.0

100.0

56.5

90.5

77.5

64.5

163

195

91

67.5

99.5

56.0

77.0

63.5

160

190

90

66.0

98.5

55.5

90.0

76.0

62.5

157

185

89

64.0

98.0

55.0

89.5

75.5

61.5

154

180

88

62.5

97.0

54.0

75.0

60.5

151

176

87

61.0

96.5

53.5

89.0

74.5

59.5

148

172

86

59.0

95.5

53.0

88.5

74.0

58.5

145

169

85

57.5

94.5

52.5

73.5

58.0

142

165

84

56.0

94.0

52.0

88.0

73.0

57.0

140

162

83

54.0

93.0

51.0

87.5

72.0

56.0

137

159

82

52.5

92.0

50.5

71.5

55.0

135

156

81

51.0

91.0

50.0

87.0

71.0

54.0

133

153

80

49.0

90.5

49.5

86.5

70.0

53.0

130

150

79

47.5

89.5

49.0

69.5

52.0

128

147

78

46.0

88.5

48.5

86.0

69.0

51.0

126

144

77

44.0

88.0

48.0

85.5

68.0

50.0

124

141

76

42.5

87.0

47.0

67.5

49.0

122

139

75

99.5

41.0

86.0

46.5

85.0

67.0

48.5

120

137

74

99.0

39.0

85.0

46.0

66.0

47.5

118

135

73

98.5

37.5

84.5

45.5

84.5

65.5

46.5

116

132

72

98.0

36.0

83.5

45.0

84.0

65.0

45.5

114

130

71

97.5

34.5

100.0

82.5

44.5

64.0

44.5

112

127

70

97.0

32.5

99.5

81.5

44.0

83.5

63.5

43.5

110

125

69

96.0

31.0

99.0

81.0

43.5

83.0

62.5

42.5

109

123

68

95.5

29.5

98.0

80.0

43.0

62.0

41.5

107

121

67

95.0

28.0

97.5

79.0

42.5

82.5

61.5

40.5

106

119

66

94.5

26.5

97.0

78.0

42.0

82.0

60.5

39.5

104

117

65

94.0

25.0

96.0

77.5

60.0

38.5

102

116

64

93.5

23.5

95.5

76.5

41.5

81.5

59.5

37.5

101

114

63

93.0

22.0

95.0

75.5

41.0

81.0

58.5

36.5

99

112

62

92.0

20.5

94.5

74.5

40.5

58.0

35.5

98

110

61

91.5

19.0

93.5

74.0

40.0

80.5

57.0

34.5

96

109

60

91.0

17.5

93.0

73.0

39.5

56.5

33.5

95

107

59

90.5

16.0

92.5

72.0

39.0

80.0

56.0

32.0

94

106

58

90.0

14.5

92.0

71.0

38.5

79.5

55.0

31.0

92

104

57

89.5

13.0

91.0

70.5

38.0

54.5

30.0

91

103

56

89.0

11.5

90.5

69.5

79.0

54.0

29.0

90

101

55

88.0

10.0

90.0

68.5

37.5

78.5

53.0

28.0

89

100

54

87.5

8.5

89.5

68.0

37.0

52.5

27.0

87

53

87.0

7.0

89.0

67.0

36.5

78.0

51.5

26.0

86

52

86.5

5.5

88.0

66.0

36.0

77.5

51.0

25.0

85

51

86.0

4.0

87.5

65.0

35.5

50.5

24.0

84

50

85.5

2.5

87.0

64.5

35.0

77.0

49.5

23.0

83

49

85.0

86.5

63.5

76.5

49.0

22.0

82

48

84.5

85.5

62.5

34.5

48.5

20.5

81

47

84.0

85.0

61.5

34.0

76.0

47.5

19.5

80

46

83.0

84.5

61.0

33.5

75.5

47.0

18.5

45

82.5

84.0

60.0

33.0

46.0

17.5

79

44

82.0

83.5

59.0

32.5

75.0

45.5

16.5

78

43

81.5

82.5

58.0

32.0

74.5

45.0

15.5

77

42

81.0

82.0

57.5

31.5

44.0

14.5

76

41

80.5

81.5

56.5

31.0

74.0

43.5

13.5

75

BẢNG 3. BẢNG CHUYỂN ĐỔI GIÁ TRỊ ĐỘ CỨNG

(Áp dụng cho Gang dẻo, Gang xám và kim loại màu)

(Hardness Conversion Table)

B

F

E

K

A

H

15T

30T

45T

HB/5

41

80.5

81.5

56.5

31.0

74.0

43.5

13.5

75

40

79.5

81.0

55.5

73.5

43.0

12.5

39

79.0

80.0

54.5

30.5

42.0

11.0

74

38

78.5

79.5

54.0

30.0

73.0

41.5

10.0

73

37

78.0

79.0

53.0

39.5

72.5

40.5

9.0

72

36

77.5

78.5

52.5

39.0

100.0

40.0

8.0

35

77.0

78.0

51.5

28.5

99.5

72.0

39.5

7.0

71

34

76.5

77.0

50.5

28.0

99.0

71.5

38.5

6.0

70

33

75.5

76.5

49.5

38.0

5.0

69

32

75.0

76.0

48.5

27.5

98.5

71.0

37.5

4.0

31

74.5

75.5

48.0

27.0

98.0

36.5

3.0

68

30

74.0

75.0

47.0

26.5

70.5

36.0

2.0

67

29

73.5

74.0

46.0

26.0

97.5

70.0

35.6

1.0

28

73.0

73.5

45.0

25.5

97.0

34.5

66

27

72.5

73.0

44.5

25.0

96.5

69.5

34.0

26

72.0

72.5

43.5

24.5

69.0

33.0

65

25

71.0

72.0

42.0

96.0

32.5

64

24

70.5

71.0

41.5

24.0

95.5

68.5

32.0

23

70.0

70.5

41.0

23.5

68.0

31.0

63

22

69.5

70.0

40.0

23.0

95.0

30.5

21

69.0

69.5

39.0

22.5

94.5

67.5

29.5

62

20

68.5

68.5

38.0

22.0

29.0

19

68.0

68.0

37.5

21.5

94.0

67.0

28.5

61

18

67.0

67.5

36.5

93.5

66.5

27.5

17

66.5

67.0

35.5

21.0

93.0

27.0

60

16

66.0

66.5

35.0

20.5

66.0

26.0

15

65.5

65.5

34.0

20.0

92.5

65.5

25.5

59

14

65.0

65.0

33.0

92.0

25.0

13

64.5

64.5

32.0

65.0

24.0

58

12

64.0

64.0

31.5

91.5

64.5

23.5

11

63.5

63.5

30.5

91.0

23.0

10

63.0

62.5

29.5

90.5

64.0

22.0

57

9

62.0

62.0

29.0

21.5

8

61.5

61.5

28.0

90.0

63.5

20.5

7

61.0

61.0

27.0

89.5

63.0

20.0

56

6

60.5

60.5

26.0

19.5

5

60.0

60.0

25.5

89.0

62.5

18.5

55

4

59.5

59.0

24.5

88.5

62.0

18.0

3

59.0

58.5

23.5

88.0

17.0

2

58.0

58.0

23.0

61.5

16.5

54

1

57.5

57.5

22.0

87.5

61.0

16.0

0

57.0

57.0

21.0

87.0

15.0

53

Đơn Vị Đo Độ Cứng

Đơn vị đo độ cứng là gì?

Độ cứng là một tên gọi đại diện cho độ chắc chắn, bền chặt của một vật liệu bất kỳ nào đó. Đại lượng này có ảnh hưởng rất nhiều đến các công đoạn chế tạo và sản xuất khác trong ngành cơ khí. Do đó, hầu hết các vật liệu trước khi đưa vào chế tạo, sản xuất bao giờ cũng có mặt. 

Đơn vị đo độ cứng là đơn vị thể hiện độ cứng của vật liệu đó. Độ cứng hay còn gọi là HRC được thể hiện bằng nhiều đơn vị khác nhau tùy theo từng thiết bị đo lường. Mà trong đó, phổ biến là đơn vị kg. Máy đo độ cứng có các thang hiển thị đơn vị đo riêng biệt.

Cách đo độ cứng HRC

 Sau khi đã tìm hiểu về đơn vị đo độ cứng thì chúng ta có thể tham khảo cách đo độ cứng để tiến hành khi có thể. Từ trước đến nay, khi trên thị trường chưa có các loại thiết bị chuyên để đo độ cứng thì con người đều sử dụng bằng thủ công.  Chúng ta sẽ trực tiếp tác động lực lên bề mặt vật liệu để cảm nhận về độ chắc chắn của nó. Với phương pháp thủ công này thì chắc chắn kết quả mà mọi người nhận được sẽ không hoàn toàn chính xác. Vì đó chỉ là những con số ước lượng. 

Cho nên, để tăng tính chính xác và giảm thiểu sự sai số trong việc đo độ cứng, người ta đã sản xuất ra các loại máy móc, thiết bị tiến hành đo có bộ phận tính toán, đo lường một cách chính xác. Như thế, chúng ta có thể tiết kiệm được thời gian rất nhiều mà hiệu quả công việc lại được tăng cao.

 

 

Thông thường, người ta sẽ dùng mũi nhọn cho máy đo độ cứng. Những thiết bị đó phải được đảm bảo các đại lượng được giữ nguyên như ban đầu. Chúng ta sẽ cho mũi kim đó đâm vào bề mặt của vật liệu. Sau đó nó sẽ tự hiển thị thông số về độ cứng lên trên màn hình. Ngoài ra, nếu mọi người muốn chuyển đổi đơn vị đo độ cứng cho phù hộ với mục đích sử dụng của mình thì có thể tiến hành đổi một cách dễ dàng.

– Độ cứng được gọi là thấp khi nó dao động trong khoảng 20 HRC hoặc 100 HRC.

– Độ cứng trung bình thường là 25 đến 45 HRC.

– Loại vật liệu có độ cứng từ 50 đến 65HRC được gọi là cao.

Tại sao nên dùng phương pháp đo độ cứng HRC?

Ưu điểm đầu tiên chính là khả năng tiết kiệm thời gian. Mọi người sẽ tiến hành đo độ cứng một cách nhanh chóng. Hơn nữa, độ chính xác của cách đo này rất cao. Chúng ta có thể nắm được các thông số rõ ràng để thực hiện các công việc khác. Đây là điều mà trước đây không thể thực hiện được bằng phương pháp thủ công. 

Bên cạnh những ưu điểm thì nó vẫn có những hạn chế riêng. Việc đo bằng các mũi kim trọng tải đâm vào bề mặt của vật liệu rất dễ xảy ra sai sót. Mũi kim nhỏ cho nên khả năng bị gãy hoặc rơi rớt rất dễ xảy ra.

Tổng kết

Hiện nay, nhằm đáp ứng nhu cầu sử dụng của con người, có rất nhiều cơ sở chuyên cung cấp những thiết bị đo lường như thế này. Mọi người có thể ghé Betatechco để chọn được sản phẩm thiết bị độc quyền của các nhà cung cấp nước ngoài, phù hợp với mục đích sử dụng thử nghiệm phân tích.

 

CÔNG TY TNHH BETA TECHNOLOGY 

Địa chỉ: Số nhà 17, Đường số 12, Khu dân cư Cityland Park Hills,  Phường 10, Quận Gò Vấp, TP Hồ Chí Minh

Điện thoại: (+84) 2862 727 095  -  0983 072 785     

Email: admin@betatechco.com 

Website: betatechco.com

Hv Của Kim Loại / Thép

Độ cứng của kim loại là gì? Độ cứng là khả năng chống lại biến dạng dẻo cục bộ thông qua mũi đâm.

Đặc điểm của độ cứng

Độ cứng chỉ biểu thị tính chất bề mặt mà không biểu thị tính chất chung cho toàn bộ sản phẩm

Độ cứng biểu thị khả năng chống mài mòn của vật liệu, độ cứng càng cao thì khả năng mài mòn càng tốt

Đối với vật liệu đồng nhất  (như trạng thái ủ) độ cứng có quan hệ với giới hạn bền và khả năng gia công cắt. Độ cứng cao thì giới hạn bền cao và khả năng cắt kém.

Cần lưu ý

Có hai loại độ cứng là độ cứng tế vi và độ cứng thô đại. Độ cứng thường dùng là độ cứng thô đại, vì mũi đâm và tải trọng đủ lớn để phản ánh độ cứng của nền, pha cứng trên một diện tích tác dụng đủ lớn, sẽ có ý nghĩa hơn trong thực tế sản xuất. Đó là lý do bạn cần có hiểu biết để tránh việc quy đổi độ cứng không phản ánh được cơ tính thậm chí sai.

Độ cứng tế vi thường được dùng trong nghiên cứu, vì mũi đâm nhỏ có thể tác dụng vào từng pha của vật liệu.

Có 3 loại độ cứng nhưng đều kí hiệu chữ H ở đầu, vì độ cứng trong Tiếng anh là Hardness

 

#1 Độ cứng Brime (HB)

Xác định bằng cách ấn tải trọng lên bi cứng, sau khi thôi tác dụng lực bề mặt mẫu sẽ có lõm.

Công thức xác định độ cứng

HB=F/S= 2F(piD(D-căn bậc 2 (D2-d2) (kG/mm2)

Đối với thép bi có đường kính D=10 mm, lực F=3000 kG, thời gian giữ tải 15 s

Độ cứng HB phản ánh được trực tiếp độ bền, nhưng cần lưu ý rằng chỉ nên đo với với vật liệu có độ cứng cao, trục.

2. Độ cứng Rocvel HR (HRB, HRC, HRA)

Dải đo rộng từ vật liệu mền đến vật liệu cứng.

Không có thứ nguyên (khác với HB)

Độ cứng theo thang A và C kí hiệu là HRA và HRC mũi đo hình nón bằng kim cương với tải lần lượt là 50 kG (thang A) và 140 kG (thang C). Độ cứng HRC là phổ biến nhất có thể đo cho thép sau tôi, thấm C, thấm C+N, thấn N. Do vết lõm khá nhỏ nên có thể đo ngay trên mặt trục

Độ cứng HRB có mũi bằng bi thép tôi song có đường kính nhỏ hơn HB, nên chỉ dùng với vật liệu mền hơn như thép ủ, gang…với tải F=90 kG.

3. Độ cứng Vicke (HV)

Độ cứng có công thức xác định như HB tức bằng tỷ số của lực trên diện tích vết đâm.

Mũi đâm bằng kim cương, tải trọng từ 1 đến 100 kG với thời gian giữ từ 10 đến 15 s

Công thức

HV=1,854F/d2 (kG/mm2)

Chuyển đổi giữa các độ cứng

Bảng quy đổi độ cứng chỉ mang tính tương đối, khi đo độ cứng tùy vào vật liệu và diện tích bề mặt mẫu..lựa chọn loại máy đo độ cứng để ra độ cứng chính xác nhất. Cần lưu ý: Độ cứng HV là độ cứng tế vi do đó khi đo độ cứng cần chú ý tổ chức của mẫu, để có giá trị đo đúng. Ví dụ nếu vết đâm đúng vào vị trí cacbit thì độ cứng sẽ cao, nền thép có độ cứng thấp hơn.

 

BẢNG TRA ĐỘ CỨNG VẬT LIỆU KIM LOẠI HRC – HRB – HB – HV

STT độ cứng HRC Độ cứng HRB Độ cứng HB Độ cứng HV

1 65   711  

2 64   695  

3 63   681  

4 62   658  

5 61   642  

6 60   627  

7 59   613  

8 58   601 746

9 57   592 727

10 56   572 694

11 55   552 649

12 54 120 534 589

13 53 120 534 589

14 52 118 504 549

15 51 118 486 531

16 50 117 469 505

17 49 117 468 497

18 48 116 456 490

19 47 115 445 474

20 46 115 430 458

21 45 114 419 448

22 44 114 415 438

23 43 114 402 424

24 42 113 388 406

25 41 112 375 393

26 40 111 373 388

27 39 111 360 376

28 38 110 348 361

29 37 109 341 351

30 36 109 331 342

31 35 108 322 332

32 34 108 314 320

33 33 107 308 311

34 32 107 300 303

35 31 106 290 292

36 30 105 277 285

37 29 104 271 277

38 28 103 264 271

39 27 103 262 262

40 26 102 255 258

41 25 101 250 255

42 24 100 245 252

43 23 100 240 247

44 22 99 233 241

45 21 98 229 235

46 20 97 223 227

Tìm Hiểu Về Máy Đo Độ Cứng Và Quy Trình Hiệu Chuẩn

Hiệu chuẩn máy đo độ cứng. Độ cứng là gì? Những ký hiệu độ cứng như HRC, HV, HL có ý nghĩa gì, chúng khác nhau như thế nào? Liệu ký hiệu HRB và HB có tương đương nhau? Bạn cần lựa chọn một máy đo độ cứng nhưng chưa rõ những ứng dụng của từng loại máy, làm sao để lựa chọn phù hợp? Làm thế nào để kiểm tra, hiệu chuẩn?

1. Độ cứng là gì

Trước khi tìm hiểu về Máy đo độ cứng, chúng ta cần biết được độ cứng là gì. Đây là câu hỏi đơn giản nhưng rất dễ gây nhầm lẫn. Chúng ta cần làm rõ độ cứng ở đây là độ cứng của kim loại/vật liệu rắn, độ cứng của nước (dung dịch), độ cứng cao su (vật liệu đàn hồi), hay độ cứng viên nén (thuốc viên),… Trong bài viết này, chúng tôi chỉ xin đề cập sâu về độ cứng kim loại, hay vật liệu rắn.

Độ cứng kim loại hay vật liệu rắn là khả năng chịu đựng (chống lại sự biến dạng) của vật liệu rắn dưới tác dụng của một lực nào đó, thường là lực xuyên thấu (đâm thủng). Điều này có ý nghĩa rất quan trọng, trong lĩnh vực gia công tạo hình sản phẩm.

Vì sao?

Vì chỉ có kim cương mới cắt được kim cương. Một vật chỉ có thể cắt được, hay tạo hình lên một vật khác khi nó cứng hơn vật bị tạo hình. Từ đó, khi phay, tiện sản phẩm, bạn sẽ lựa chọn mũi dao gia công phù hợp với sản phẩm cần gia công.

Đối với một số vật liệu, sau khi trải qua quá trình tôi luyện, sẽ trở nên “cứng” hơn so với trước đó. Và để xác định được điều này, người ta đã phát minh ra rất nhiều phương pháp đo, xây dựng thang đo tương ứng.

2. Các thang đo độ cứng, ký hiệu, nguyên lý

2.1. Độ cứng MOHS

Là loại thang đo độ cứng chủ yếu dành cho các loại khoáng vật. Thang đo này đặc trưng cho khả năng làm trầy xước hoặc chống lại trầy xước, dựa trên những loại khoáng vật khác nhau. Khoáng vật nào có độ cứng lớn hơn sẽ làm trầy được khoáng vật có độ cứng bé hơn.

Như hình trên, rất dễ nhận thấy, KIM CƯƠNG là vật liệu cứng nhất. Giả sử bạn có một vật liệu có thể làm trầy tinh thể FLOURITE, và bị làm trầy bởi APATITE, thì vật liệu đó sẽ có độ cứng trong khoảng 4~5MOHS.

Phương pháp này chỉ mang tính chất so sánh tương đối, không đưa ra kết quả chính xác, chỉ có ý nghĩa trong nghiên cứu tính chất của tinh thể, ít được ứng dụng trong sản xuất, đo lường thực tế.

2.2. Độ cứng BRINELL

Là loại thang đo độ cứng lâu đời nhưng được ứng dụng khá rộng rãi. Đây là phương pháp đo thuộc dạng ấn lõm. Mũi thử có đầu là một viên bi có đường kính D và lực ấn P xác định, tác dụng lực vuông góc lên bề mặt mẫu thử trong một khoảng thời gian xác định, tạo nên vết lõm. Sau đó, xác định đường kính vết lõm, tính được độ cứng, ký hiệu là HB.

Đường kính đầu bi có thể là 10mm, 5mm hoặc 1mm với lực ấn là 3000kgf, 750kgf hoặc 30kgf. Mối quan hệ P/D2 được chuẩn hóa để kết quả đo được ổn định ứng với nhiều loại vật liệu khác nhau. Ví dụ với thép, tỷ lệ này là 30:1, với nhôm tỷ lệ này là 5:1.

Công thức:

Với,

F: lực tác dụng vuông góc với bề mặt mẫu thử, N

D: đường kính viên bi của mũi thử, mm

d: đường kính vết lõm trên bề mặt mẫu thử, mm

hoặc công thức:

Với,

P: lực tác dụng vuông góc với bề mặt mẫu thử, kgf

D: đường kính viên bi của mũi thử, mm

d: đường kính vết lõm trên bề mặt mẫu thử, mm

* Đặc trưng của phương pháp Brinell:

_ Cần kính lúp có vạch đo, hoặc kính hiển vi, máy đo quang học để xác định vết lõm.

_ Lực ấn lõm chỉ tác dụng 1 lần trên bề mặt mẫu thử.

_ Phương pháp đo nhanh, độ chính xác không quá cao

_ Không áp dụng cho vật liệu quá cứng, tấm mỏng, bề mặt cong.

2.3. Độ cứng ROCKWELL

Đây cũng là một loại thang đo độ cứng phổ biến hiện nay, dựa trên phương pháp đo thuộc dạng ấn lõm. Điểm khác biệt so với phương pháp Brinell, đó là phương pháp Rockwell sẽ ấn 2 lần lên bề mặt mẫu thử. Chênh lệch độ lún sâu giữa 2 lần ấn lực sẽ được dùng để tính toán độ cứng. Như vậy, phương pháp này không cần hệ thống quang học để đo kích thước vết lõm. Đơn vị chung của thang đo Rockwell là HR (Hardness Rockwell).

Phương pháp này sử dụng 2 loại mũi đo: đầu bi (Carbide Tungsten) và mũi kim cương dạng chóp, góc đỉnh 120º (kim cương).

Phương pháp này có rất nhiều thang đo cùng hệ, tùy thuộc vào dạng mũi đo, lực ấn. Do đó, chúng ta sẽ thấy nhiều loại đơn vị đo của Rockwell, như HRA, HRB, HRC,… đều bắt đầu bằng ký hiệu HR, ký hiệu thứ 3 theo bảng bên dưới để phân biệt.

Bảng độ cứng Rockwell:

Như vậy, rõ ràng đơn vị HB (Brinell) và HRB (Rockwell) là hoàn toàn khác nhau.

Công thức:

Với,

U = 100 khi đo độ cứng bằng mũi kim cương

U = 130 khi đo độ cứng bằng mũi viên bi

T = 0.002mm khi đo độ cứng thông thường (Regular Rockwell Hardness)

U = 0.001mm khi đo độ cứng bề mặt (Superficial Rockwell Hardness)

Δh: chênh lệch chiều cao giữa 2 lực ấn lõm (mm)

Máy đo độ cứng Rockwell điện tử MITUTOYO HR-400/500 series      Máy đo độ cứng Rockwell đồng hồ MITUTOYO HR-200 Series

_ Không cần kính hiển vi, máy đo quang học để xác định vết lõm.Đặc trưng của phương pháp Rockwell:

_ Lực ấn lõm tác dụng 2 lần trên bề mặt mẫu thử, cần thời gian để đạt đúng chiều sâu ở mỗi lần ấn lực.

_ Phương pháp đo nhanh, độ chính xác cao.

_ Chỉ áp dụng với chi tiết có phạm vi nhỏ.

_ Không phù hợp với vật liệu tấm mỏng, xi mạ.

_ Thang đo rộng do có nhiều loại đơn vị đo, có thể chuyển đổi đơn vị đo cùng hệ Rockwell.



2.4. Độ cứng VICKER

Đây cũng là một loại thang đo độ cứng phổ biến hiện nay, dựa trên phương pháp đo thuộc dạng ấn lõm. Phương pháp gần giống với phương pháp Brinell, nhưng độ chính xác cao hơn.

Đầu tiên, điều chỉnh hệ thống quang học để nhìn thấy rõ bề mặt của mẫu. Sau đó, mũi chóp kim cương sẽ ấn với lực chỉ định một lần . 2 đường chéo của vết lõm và lực ấn sẽ được dùng để tính toán độ cứng, đơn vị đo là HV. Phương pháp này sử dụng mũi kim cương dạng chóp, góc 2 cạnh đối diện 136º.

Công thức:

Trong đó,

HV: độ cứng theo thang Vicker,

F: lực tác dụng, N

d: chiều dài trung bình 2 đường chéo (D1,D2) của vết lõm, mm

hoặc:

Trong đó,

HV: độ cứng theo thang Vicker,

F: lực tác dụng, kgf

d: chiều dài trung bình 2 đường chéo (D1,D2) của vết lõm, µm

Máy độ cứng Vicker MITUTOYO HV-200

Đặc trưng của phương pháp Vicker:

_ Cần kính hiển vi, máy đo quang học để xác định bề mặt mẫu cũng như vết lõm.

_ Lực ấn lõm tác dụng 1 lần trên bề mặt mẫu thử, cần thời gian để hình thành vết lõm rõ ràng.

_ Phương pháp đo được độ cứng các chi tiết nhỏ, đòi hỏi bề mặt được gia công kỹ lưỡng.

_ Đo được độ cứng vật liệu mỏng, lớp phủ.

2.5. Độ cứng LEEB

Độ cứng Leeb thuộc phương pháp đo theo kiểu bật nẩy của bi đo. Theo nguyên lý động lực Leeb, giá trị độ cứng được tính từ sự mất năng lượng của vật thể va chạm xác định sau khi tác động lên một mẫu kim loại. Chỉ số Leeb (vi, vr) được lấy làm thước đo tổn thất năng lượng do biến dạng dẻo: mẫu thử càng cứng thì tốc độ phản lực của bị đo phục hồi nhanh hơn so với mẫu mềm hơn. Một bộ từ tính bên trong ống đo điện áp thay đổi khi bị đo nẩy lại, di chuyển qua cuộn dây đo.

Công thức:

Trong đó,

HL: độ cứng theo thang Leeb,

vi: vận tốc ban đầu khi viên bi được bắn ra, chưa va đập với mẫu

vr: vận tốc phản lại của bi đo sau khi va đập với mẫu thử.

Máy đo độ cứng Leeb cầm tay MITUTOYO HH-411

Đặc trưng của phương pháp Leeb

_ Là phương pháp đo cơ động và nhanh chóng.

_ Có thể chuyển đổi sang nhiều đơn vị đo khác.

_ Độ chính xác và độ lặp lại ở mức tương đối, thấp hơn so với các loại máy bàn của Rockwell, Vicker.

Quy trình hiệu chuẩn máy đo độ cứng

Lưu ý: Đây là quy trình theo chuẩn chung, quy trình cụ thể trên thực tế sẽ có những điểm khác biệt nhất định, phụ thuộc vào nhu cầu của khách hàng.

3. Phương tiện hiệu chuẩn Máy đo độ cứng

Phải sử dụng phương tiện hiệu chuẩn ghi trong bảng 2. Các phương tiện hiệu chuẩn được sử dụng phải có phạm vi đo phù hợp.

4. Điều kiện hiệu chuẩn

Khi tiến hành hiệu chuẩn phải đảm bảo những điều kiện sau:

Nhiệt độ nơi đặt máy phải đảm bảo 27oC + 5oC.

Vị trí đặt máy phải tránh được ảnh hưởng của ăn mòn hóa chất và chấn động.

Máy phải được lắp đặt chắc chắn theo thuyết minh hướng dẫn lắp đặt, sử dụng. Việc hiệu chuẩn được thực hiện tại nơi lắp đặt máy.

5. Tiến hành hiệu chuẩn Máy đo độ cứng

5.1 Kiểm tra bên ngoài

Kiểm tra theo các yêu cầu sau đây:

5.1.1 Máy phải có nhãn hiệu ghi số máy, nơi sản xuất.

5.1.2 Máy phải có đầy đủ các bộ phận và phụ kiện theo thuyết minh sử dụng.

5.1.3 Mặt số của bộ phận chỉ thị giá trị độ cứng hoặc mặt số của các thang chỉ lực thử phải rõ ràng.

5.2 Kiểm tra kỹ thuật

Kiểm tra theo các yêu cầu sau đây:

Kiểm tra trạng thái cân bằng của máy

Dùng Nivô kiểm tra độ cân bằng của máy. Độ lệch theo phương nằm ngang và phương thẳng đứng không quá 1mm/m.

Kiểm tra trạng thái làm việc của máy

Kiểm tra bộ phận tạo lực

Điều khiển các bộ phận truyền động để tạo lực thử ở các mức lực. Bộ phận tạo lực (bao gồm cả bộ phận tăng giảm tốc độ lực thử, nếu có) phải đảm bảo sao cho lực được tạo ra một cách đều đặn, liên tục, không biến động đột ngột.

5.2.1.2. Kiểm tra mặt bàn đặt mẫu thử và bộ phận nâng hạ bàn

Kiểm tra bộ phận đo độ cứng Kiểm tra độ không phẳng của mặt bàn đặt mẫu bằng thước tóc và bộ căn lá. Độ  không phẳng không vượt quá 0,1 mm/100 mm. Điều khiển để bàn đặt mẫu dịch chuyển, bàn phải lên xuống nhẹ nhàng, không bị giật cục, trục vít me đỡ bàn không được rơ.

5.2.1.3. Kiểm tra bộ phận đo độ cứng Kiểm tra độ không phẳng của mặt bàn đặt mẫu bằng thước tóc và bộ căn lá.

a – Kiểm tra bộ phận đo độ cứng của máy thử độ cứng Rockwell

Thanh đo của đồng hồ đo chiều sâu vết nén phải chuyển động nhẹ nhàng trên toàn bộ phạm vi đo. Trong quá trình chuyển động, kim không được nhẩy bước. Sau khi tác dụng một lực nhỏ lên đầu đo, kim phải trở lại vị trí ban đầu. Đồng hồ đo phải phù hợp với TCVN 257-2 : 2000 (Kiểm tra xác nhận và hiệu chuẩn máy thử độ cứng Rocwell).

b – Kiểm tra bộ phận đo của máy thử độ cứng Brinell và Vickers

– Với máy có bộ phận đo là quang học, phải đảm bảo các yêu cầu sau đây:

+ Vùng quan sát phải được chiếu sáng đều;

+ Tâm vết nén phải nằm giữa trường quan sát;

+ Vết nén và các vạch số của thước vạch phải rõ nét.

– Kiểm tra độ chính xác của thước vạch bằng thước vạch chuẩn.

+ Với máy thử độ cứng Brinell, sai số không được vượt quá 1%;

+ Với máy thử độ cứng Vickers, sai số không được vượt quá 0,1%.

Kiểm tra bộ phận gá kẹp mẫu thử

Bộ phận gá kẹp mẫu thử phải giữ chặt được mẫu thử trên bàn đặt mẫu trong suốt quá trình thử.

 Kiểm tra mũi đo

Sử dụng ống kính phóng đại để quan sát mũi đo. Bề mặt mũi đo không được có vết nứt hoặc khuyết tật.

Mũi đo phải phù hợp với TCVN 256 – 2 : 2000 (Kiểm tra xác nhận và hiệu chuẩn máy thử độ cứng Brinell) hoặc TCVN 257 – 2: 2000 hoặc TCVN 258 – 2 : 2000 (Kiểm ta xác nhận và hiệu chuẩn máy thử độ cứng Vickers).

Kiểm tra đo lường

Quy định chung

Quy định đối với kiểm tra lực thử

– Với máy thử độ cứng Rockwell, phải kiểm tra lực ban đầu và các mức lực tổng;

– Với máy thử độ cứng Brinell và Vickers phải kiểm tra tất cả các mức lực;

– Các mức lực được kiểm tra theo chiều lực tăng, mỗi mức được kiểm tra ít nhất 3 lần.

Quy định đối với sai số và tản mạn của giá trị cứng

– Với máy thử độ cứng Rockwell, phải kiểm tra sai số tuyệt đối và độ tản mạn giá trị độ cứng đối với tất cả các thang đo. Trường hợp chỉ dùng 1 thang đo thì tiến hành kiểm tra sai số đối với thang đo được sử dụng.

– Với máy có 2 phương pháp thử độ cứng Rockwell Brinell, hoặc Vickers – Brinell, phải kiểm tra sai số độ cứng và độ tản mạn tương đối với cả 2 phương pháp. Trường hợp chỉ dùng 1 phương pháp thì tiến hành kiểm tra sai số đối với phương pháp được sử dụng.

– Sai số tương đối cho phép lớn nhất của lực thử cho trong bảng 3.

– Sai số tuyệt đối và độ tản mạn cho phép lớn nhất của giá trị độ cứng đối với máy thử độ cứng Rockwell cho trong bảng 4.

– Sai số tương đối của giá trị độ cứng và độ tản mạn tương đối cho phép lớn nhất của đường kính hoặc đường chéo vết lõm với máy thử độ cứng Brinell hoặc Vickers cho bảng 5.

7. Tiến hành kiểm tra

7.1. Kiểm tra sai số tương đối của lực thử

Sai số tương đối của lực thử tại các mức được kiểm tra theo chiều lực tăng, mỗi mức được kiểm tra 3 lần.

Sai số tương đối của lực thử biểu thị bằng % được xác định theo công thức:

Kiểm tra sai số tuyệt đối và độ tản mạn của giá trị độ cứng với máy thử độ cứng Rockwell.

Với mỗi thang đo độ cứng, phải sử dụng ít nhất là 3 tấm chuẩn độ cứng để kiểm tra máy. Giá trị độ cứng của các tấm chuẩn phải nằm trong giới hạn sau:

Phải tiến hành 5 phép đo trên mỗi tấm chuẩn sau khi đã loại bỏ 2 phép đo đầu tiên. Vị trí các vết thử phải phân bố tương đối đều trên bề mặt tấm chuẩn.

a – Kiểm tra sai số tuyệt đối của giá trị độ cứng Rockwell

Sai số tuyệt đối của giá trị độ cứng Rockwell được  xác định theo công thức:

Ä = ⎯H – H (HR)

Trong đó:

Ä : sai số tuyệt đối của giá trị độ cứng Rockwell;

H : giá trị độ cứng danh nghĩa của tấm chuẩn độ cứng;

H :  giá trị trung bình của 5 giá trị độ cứng đo được trên một tấm chuẩn độ cứng. b – Kiểm tra độ tản mạn của giá trị độ cứng Rocwell

Độ tản mạn của giá trị độ cứng được xác định theo công thức:

RH = Hmax – Hmin (HR)

Trong đó:

R: độ tản mạn

Hmax, Hmin : giá trị độ cứng lớn nhất và nhỏ nhất trong 5 giá trị đo được trên 1 tấm chuẩn độ cứng.

7.2. Kiểm tra sai số tương đối của giá trị độ cứng:

Brinell hoặc Vickers và độ tản mạn tương đối của đường kính vết lõm hoặc đường chéo vết nứt.

– Với máy thử độ cứng Brinell, phải sử dụng ít nhất là 2 tấm chuẩn độ cứng Brinell với cùng một mức lực thử để kiểm tra máy. Giá trị độ cứng của 2 tấm chuẩn độ cứng phải nằm trong giới hạn sau:

Với máy thử độ cứng Vickers, phải sử dụng ít nhất 3 tấm chuẩn độ cứng Vickers với cùng một mức lực thử để kiểm tra máy. Giá trị độ cứng của 3 tấm chuẩn phải nằm trong giới  hạn sau:

– Vị trí các vết đo phải phân bố tương đối đều trên bề mặt tấm chuẩn. Phải tiến hành 5 phép đo trên mỗi tấm chuẩn độ cứng.

– Kiểm tra sai số tương đối của giá trị độ cứng Brinell và Vickers.

Sai số tương đối của giá trị độ cứng biểu thị bằng % được xác định theo công thức sau:

Chú thích (*): Đường kính trung bình của vết hoặc đường chéo trung bình của vết nén là giá trị trung bình của đường kính hoặc đường chéo của một vết lõm hoặc một vết nén đo theo hai phương vuông góc với nhau.

Bạn đang đọc nội dung bài viết Độ Cứng Của Thép trên website Herodota.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!